电话:13209159600
关闭
您当前的位置:首页 > 职场资讯 > 国外生活

强度理论是什么

来源:出国留学生活 时间:2023-04-19 作者:出国留学就业 浏览量:

强度理论是判断材料在复杂应力状态下是否破坏的理论。材料在外力作用下有两种不同的破坏形式:一是在不发生显著塑性变形时的突然断裂,称为脆性破坏;二是因发生显著塑性变形而不能继续承载的破坏,称为塑性破坏。

一、常用理论

有以下几种:

第一强度理论

第一强度理论又称为最大拉应力理论,其表述是材料发生断裂是由最大拉应力引起,即最大拉应力达到某一极限值时材料发生断裂。

在简单拉伸试验中,三个主应力有两个是零,最大主应力就是试件横截面上该点的应力,当这个应力达到材料的极限强度σb时,试件就断裂。因此,根据此强度理论,通过简单拉伸试验,可知材料的极限应力就是σb。于是在复杂应力状态下,材料的破坏条件是

σ1=σb (a)

考虑安全系数以后的强度条件是

σ1≤[σ] (1-59)

需指出的是:上式中的σ1必须为拉应力。在没有拉应力的三向压缩应力状态下,显然是不能采用第一强度理论来建立强度条件的。

第一强度理论适用于脆性材料,且最大拉应力大于或等于最大压应力(值绝对值)的情形。

第二强度理论

第二强度理论 又称最大伸长线应变理论。它是根据 J.-V.彭赛列的最大应变理论改进而成的。主要适用于脆性材料。它假定,无论材料内一点的应力状态如何,只要材料内该点的最大伸长应变ε1达到了单向拉伸断裂时最大伸长应变的极限值εi,材料就发生断裂破坏,其破坏条件为:

ε1≥εi (εi>0)。

对于三向应力状态,式中σ1、σ2和σ3为危险点由大到小的三个主应力;E、为材料的弹性模量和泊松比(见材料的力学性能)。

第二强度理论适用于脆性材料,且最大压应力的绝对值大于最大拉应力的情形。

第三强度理论

第三强度理论 又称最大剪应力理论或特雷斯卡屈服准则。法国的C.-A. de库仑于1773年,H.特雷斯卡 于1868年分别提出和研究过这一理论。该理论假定,最大剪应力是引起材料屈服的原因,即不论在什么样的应力状态下,只要材料内某处的最大剪应力τmax达到了单向拉伸屈服时剪应力的极限值τy,材料就在该处出现显著塑性变形或屈服。由于 , 所以这个理论的塑性破坏条件为:

σ1-σ3≥σy,

式中σy是屈服正应力。

第四强度理论 莫尔强度理论

第四强度理论 又称最大形状改变比能理论。它是波兰的M. T.胡贝尔于1904年从总应变能理论改进而来的。德国的R. von米泽斯于1913年,美国的H.亨奇于1925年都对这一理论作过进一步的研究和阐述。该理论适用于塑性材料。

二、相关应用

断裂失效

第一、二强度理论(脆性材料的单、二向应力状态,塑性材料的三向应力状态)

屈服失效

第三、四强度理论(脆性材料的三向应力状态,塑性材料的单、二向应力状态)

第一理论的应用和局限

1、应用

材料无裂纹脆性断裂失效形式(脆性材料二向或三向受拉状态;最大压应力值不超过最大拉应力值或超过不多)。

2、局限

没考虑σ2、σ3对材料的破坏影响,对无拉应力的应力状态无法应用。

第二理论的应用和局限

1、应用

脆性材料的二向或三向应力状态且压应力很大(大于最大拉应力)的情况。

2、局限

只与极少数的脆性材料在某些受力形式下的实验结果相吻合。

第三理论的应用和局限

1、应用

材料的屈服失效形式。

2、局限

没考虑σ2对材料的破坏影响,计算结果偏于安全。

第四理论的应用和局限

1、应用

材料的屈服失效形势。

2、局限

与第三强度理论相比更符合实际,但公式较复杂。

微信扫一扫分享资讯
微信公众号
手机浏览

Copyright 2024 陕西星枫科技有限公司 陕ICP备18012436号 陕公网安备61011202000767

地址:陕西省西安市未央区未央路80号 EMAIL:1061941020@qq.com

ICP经营许可证:陕B2-20240222 人力资源证: 陕人服证字[2022]第0106003123号

Powered by PHPYun.

用微信扫一扫